An electronic perspective on the reduction of an n=n double bond at a conserved dimolybdenum core.

نویسندگان

  • Julia K Padden Metzker
  • John E McGrady
چکیده

Density functional theory has been used to assess the role of the bimetallic core in supporting reductive cleavage of the N=N double bond in [Cp2Mo2(mu-SMe)3(mu-eta1:eta1-HN=NPh)]+. The HOMO of the complex, the Mo-Mo delta orbital, plays a key role as a source of high-energy electrons, available for transfer into the vacant orbitals of the N=N unit. As a result, the metal centres cycle between the Mo(III) and Mo(IV) oxidation states. The symmetry of the Mo-Mo delta "buffer" orbital has a profound influence on the reaction pathway, because significant overlap with the redox-active orbital on the N=N unit (pi* or sigma*) is required for efficient electron transfer. The orthogonality of the Mo-Mo delta and N-N sigma* orbitals in the eta1:eta1 coordination mode ensures that electron transfer into the N-N sigma bond is effectively blocked, and a rate-limiting eta1:eta1-->eta1 rearrangement is a necessary precursor to cleavage of the bond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

Nano-Fe3O4 as a heterogeneous recyclable magnetically separable catalyst for synthesis of nitrogen fused imidazoheterocycles via double C-N bond formation

An efficient and convenient approach towards the synthesis of nitrogen fused imidazoheterocycles through double C-N bond formation in a single step has been achieved with a good range of substituted phenacyl bromides in the presence of magnetically recoverable Fe3O4 as a green heterogeneous nanocatalyst. The present approach was found to be environmentally benign and econo...

متن کامل

Computational study of structures and electronic properties of the Catapres on nano structure of fullerene with calculations method

In this report, using computational methods of quantum mechanical the study of structural, electronic and orbitals properties of Catapres on nanostructured fullerenes using software Gaussian 98 is done.  At the     first compounds were optimized, then NBO calculations have been done. The results indicate changes of energy levels HOMO & LUMO, dipole moments, bond distance of N61-C<sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 10 24  شماره 

صفحات  -

تاریخ انتشار 2004